System for the Monitoring of Efficient Irrigation and Agricultural Yield
MORERA project aims to a personalized irrigation recommendation system for each plot based on satellite images and Artificial Intelligence, as well as a new generation of miniaturized and compact remote sensing instruments to respond with agility to the user needs.
The project has the objective to promote the Spanish agricultural industry, the most important in the country representing 11% of its GDP, providing personalized information to farmers allowing them to apply precision agriculture at low cost.
Pioneering project in irrigation and agricultural yield monitoring with new space sensors
MORERA is a pioneering initiative in the sector that will allow the elaboration of personalized irrigation recommendations for each plot, allowing to reduce the water in crops by up to 25% thanks to Artificial Intelligence and satellite imaging, integrating data from dedicated instruments and from multiple sources (Copernicus, Spain’s meteorology agency AEMET, etc.) and developing a new generation of miniaturized and compact space borne remote sensing instruments.
MORERA’s comprehensive system will guarantee that data adds value to end-users, covering from sensors to crops thanks to new Artificial Intelligence techniques applied to remote sensing and other data sources. It proposes a new generation of miniaturized remote sensing instruments in all bands, starting with thermal infrared. The full deployment of these solutions will demonstrate the technology’s potential to reduce water use in annual and perennial crops and the ability to make more accurate harvest predictions throughout the crop cycle.
MORERA is the first project for a parcel recommendation system (not only maps) based on new remote sensing instruments and on data from Copernicus satellites processed using Artificial Intelligence algorithms. It is also a pioneer project in Europe in using thermal infrared to calculate evapotranspiration and water stress, which will allow managing deficit irrigation.
New generation of miniaturized remote sensing instruments
Since this system will require data which is optimized for agricultural use and with short update times, MORERA will also go further in the field of remote sensing to generate miniaturized and compact optical instruments with a combined size and resolution ratio not yet available. This will be achieved through the application of freeform geometries in space optics systems, which will reduce the size and cost of the system. These combined elements, not present in any of the instruments currently in service, must be compatible with smallsats and cubesat constellations to minimize development times and costs by increasing the versatility of the system (constellations that increase revisit and/or coverage, extrapolation to other applications or inclusion of new detection bands, etc.).
Benefits for Agri-food industry sector
Thanks to MORERA, farmers will be able to apply precision agriculture at low cost with a system that will provide them with periodic measurements of the crops’ status and will give them personalized fertigation recommendations, as well as yield forecasts based on Artificial Intelligence and Big Data algorithms. This integrated concept represents an advance with respect to the options currently available on the market, responding to the needs of the sector in terms of resource management in the context of climate change.
In this direction, MORERA will investigate new algorithms for the processing of remote sensing images with machine learning to optimize farmers’ decisions: recommendations in deficit irrigation scenarios and prediction of crop yields.
Consortium members
The MORERA consortium covers the entire value chain, with technology partners such as LIDAX and ASE OPTICS, system experts such as Thales Alenia Space, and reaching agricultural end-users with companies such as TEPRO. Each industrial partner is accompanied by a top national and European Public Research Organization (PRO) such as the National Institute of Aerospace Technology (INTA), the Institute of Sustainable Agriculture (IAS-CSIC) and the University of Valencia (UV), led in this project by José Antonio Sobrino, Principal Investigator of the project and Jaume I award for his use of remote sensing for environmental protection.
Thales Alenia Space in Spain leads this consortium and will be in charge of the definition of the complete system, the Artificial Intelligence algorithms in cooperation with TEPRO and the IAS and the definition and integration of the new thermal infrared instruments in cooperation with LIDAX, ASE OPTICS, INTA and UV, while being responsible for the integration and final testing of the global system prototype.
More information...
If you are interested in this project, or if you want more information about ASE Optics Europe capabilities and expertise, contact us!